技术前沿:车载摄像头
自动驾驶包括感知、判断和执行,而感知是整个过程的源头,是自动驾驶系统的重要模块。在车辆行车过程中,感知系统会通过传感器实时采集周边环境的信息,相当于自动驾驶汽车的「眼睛」,可以帮助汽车实现类似于人类驾驶员一样效果的观察能力。
在自动驾驶车辆中,感知系统主要由摄像头、毫米波雷达、激光雷达(可选,这里主要是怕被特斯拉的粉丝杠)等传感器构成。摄像头作为主要的环境感知传感器起着非常重要的作用, 可以实现 360° 全面视觉感知,弥补雷达在物体识别上的缺陷,是最接近人类视觉的传感器。因此是车载摄像头是自动驾驶领域的关键设备之一。
什么是车载摄像头?
车载摄像头主要的硬件结构包括光学镜头(其中包含光学镜片、滤光片、保护膜等)、图像传感器、图像信号处理器 ISP、串行器、连接器等器件。其结构示意图如图所示:
车载摄像头的结构构成(图片来源:安森美半导体公司)
光学镜头:负责聚焦光线,将视野中的物体投射到成像介质表面,根据成像效果的要求不同,可能要求多层光学镜片。滤光片可以将人眼看不到的光波段进行滤除,只留下人眼视野范围内的实际景物的可见光波段。
图像传感器:图像传感器可以利用光电器件的光电转换功能将感光面上的光像转换为与光像成相应比例关系的电信号。主要分为 CCD 和 CMOS 两种。
ISP 图像信号处理器:主要使用硬件结构完成图像图传感器输入的图像视频源 RAW 格式数据的前处理,可转换为 YCbCr 等格式。还可以完成图像缩放、自动曝光、自动白平衡、自动聚焦等多种工作。
串行器:将处理后的图像数据进行传输,可用于传输RGB、YUV等多种图像数据种类。
连接器:用于连接固定摄像头。
车载摄像头在制造工艺及可靠性要求方面也要高于工业摄像头和商用摄像头,由于汽车需长期工作在恶劣环境中,车载摄像头需要在高低温环境、强振动、高湿热等复杂工况环境下稳定工作,对于工艺制造方面的要求主要如下:
车载摄像头的工艺需求
目前车上搭载的车载摄像头根据安装位置主要分为车载摄像头主要分为前视摄像头、环视摄像头、后视摄像头、侧视摄像头以及内置摄像头五种类别。
前视摄像头:主要安装在前挡风玻璃上,用于实现行车的视觉感知及识别功能,根据功能又可以分为前视主摄像头、前视窄角摄像头和前视广角摄像头。
特斯拉前视摄像头模组(图片来源:特斯拉)
前视主摄像头:该摄像头在 L2 的 ADAS 系统中作为主摄像头使用。其视场角的一般为 30°、50°、60°、100°、120°,检测距离一般为 150 - 170 m,摄像头输出的格式为 RCCB 或 RCCC。
前视广角摄像头:该摄像头的作用主要是识别距离较近的物体,主要用于城市道路工况、低速行驶等场景,其视场角在 120° - 150°,检测距离在 50 m 左右。在后续 8MP 镜头大规模装车后,无需该摄像头。
前视窄角摄像头:该摄像头的主要作用是进行红绿灯、行人等目标的识别,一般选用窄角镜头,可选择 30 - 40° 左右的镜头。并且该镜头的像素一般和前视主摄像头的镜头像素一致,该摄像头采用窄角度,具有更高的像素密度和更远的检测距离,一般可达 250 m 甚至可探测更远的距离。
在上了 8MP 摄像头后,前视主摄像头的 FOV 可达 120°,该摄像头可能就不需要了。检测距离在 60 m 左右。
环视摄像头:主要安装在车身四周,一般使用 4 - 8 个摄像头,可分为前向鱼眼摄像头/左侧鱼眼摄像头/右侧鱼眼摄像头/后向鱼眼摄像头。用于全景环视功能的显示,以及融合泊车功能的视觉感知及目标检测;常用色彩矩阵为 RGGB,因为有色彩还原的需求。
后视摄像头:一般安装在后备箱上,主要是实现泊车辅助。视场角在 120 - 140° 之间,探测距离大概 50 m。
侧前视摄像头:安装在 B 柱或者车辆后视镜处,该摄像头的视场角一般为 90° - 100°,探测距离大概在 80 m 左右,这个摄像头的主要作用是检测侧向车辆及自行车。
侧后视摄像头:一般安装在车辆前翼子板处,该摄像头的视场角一般为 90° 左右,探测距离也在 80 m 左右,主要用于车辆变道、汇入其它道路等场景应用。
内置摄像头:主要用于监测司机状态,实现疲劳提醒等功能。
其中,前视摄像头价格相对较高,目前市场价格处在 300 - 500 元水平;其余摄像头价格在 150 - 200 元左右。
主流厂商车载摄像头搭载方案
从方案中我们可以看到,特斯拉的 8 个摄像头均与行车系统有关联,这与其一直宣传的不依靠激光雷达纯视觉的自动驾驶方案是有较大关联的,特斯拉的这一套方案的最大优势就是:高性价比。特斯拉用了成本非常低的自研 1.2MP 摄像机就实现了 L2+ 级别的自动驾驶。
小鹏 P7 使用了多个摄像头,这一套方案的最大优势就是:可拓展性较强。前期方案在设计时需要提高硬件成本,但是在后期 OTA 升级后,其自动驾驶功能具有非常好的兼容性和可拓展性。
通过这套传感器模型,小鹏实现了具有较好体验的 L2+ 级别的自动驾驶功能,包括小鹏极具特色的高速自主导航驾驶(NGP)和停车场记忆泊车功能。
奔驰 S 级是传统主机厂方案的代表,双目立体摄像头方案是奔驰 S 级最大的优势。相比于单目摄像头,双目摄像头可以计算当前检测目标在 X、Y、Z 坐标下的运动情况,判断检测目标的姿态及目标类型,奔驰在 L2 级别的 ADAS 功能的体验效果也比另外两家好一些。
从上文对已经量产车型的摄像头方案分析中,我们发现其都是使用中低像素摄像头来实现自动驾驶功能。
车载摄像头的未来改善需求
摄像头的像素大幅提升,带来的不光光是对芯片算力等性能的要求,还带来了对于功率、热管理等层面的需求。为了实现更好的性能,摄像头需要更大功率的电源,因此摄像头热管理也是一个需要考虑的大问题。传统摄像头基本都是使用内置 ISP,但一些行业也在使用无 ISP 的摄像头模组,数据直接传输到域控制器,由外部 ISP 进行处理。
ISP 是摄像头产生热量和提升功耗的主要元器件,部分公司提出把 ISP 集成到控制器中进行热管理。
例如安波福提出的解决方案是摄像头保留光学镜头和图像传感器部分,将 ISP 移动到相应的控制器主板中,通过以太网来进行数据传输。很多图像传感器制造商在把 ISP 模块从摄像头模组中移除,来限制摄像头的功耗和热量产生。
与此同时,ISP 被集成到专用的视觉处理器(SoC)中,可以提高图像的成像质量,并且可以同时处理多个摄像头的数据,以此来降低成本。
相信未来单个高精度摄像头的成本会出现大幅下降,后续当高精度摄像头成为标配时,整体成本会有比较大的下降空间。
评论·0